Introduccion Básica de Magnetismo y Trabajo Mecánico.

    El magnetismo es una rama de la física muy compleja ya que no puede ser explicado únicamente mediante postulados de la mecánica clásica, por lo que aquí trataremos brevemente algunos de los fenómenos más básicos. 

    El fenómeno del magnetismo era conocido ya por los antiguos griegos desde hace más de 2000 años. Se observaba que ciertos minerales (imanes) podían atraer o repeler pequeños objetos de hierro. De hecho, el nombre de magnetismo proviene de la provincia griega Magnesia, donde se encuentran los yacimientos más importantes de la magnetita (Fe3O4), mineral con acusadas propiedades magnéticas.

   Aunque se tenía conocimiento de este fenómeno de forma experimental no fue hasta mediados del siglo XIX cuando se formularon teóricamente todas las interacciones de tipo eléctrico y magnético, resumidas en las ecuaciones de Maxwell.

Nociones previas

    Las propiedades magnéticas son más acusadas en los extremos del imán, que se denominan polos magnéticos, polo Norte (N) y polo Sur (S). Del mismo modo que cargas eléctricas del mismo signo se repelen y de distinto se atraen, imanes que se acercan por polos iguales se repelen y si se acercan por polos opuestos se atraen. Es imposible aislar un único polo magnético, de modo que si un imán se parte en dos, en cada trozo vuelve a haber un polo Norte y uno Sur.

    De forma análoga al campo eléctrico en magnetismo hablamos en términos de un vector llamado campo magnético B representado por sus líneas de campo de modo que en cada punto del espacio el campo es tangente a dichas líneas.

    El hecho de que los polos magnéticos nunca se puedan dar por separado se traduce en que las líneas de campo son siempre cerradas, saliendo del polo Norte y entrando por el polo Sur.

Cuando un trozo de hierro, un imán o un hilo de corriente se colocan en una zona en la que existe un campo se ven sometidos una fuerza que tiende a orientarlos de una forma determinada.

Materiales magnéticos

El comportamiento de los materiales en presencia de un campo magnético sólo puede explicarse a partir de la mecánica cuántica, ya que se basa en una propiedad del electrón conocida como espín. Se clasifican fundamentalmente en los siguientes grupos: 

*Ferromagnéticos: constituyen los imanes por excelencia, son materiales que pueden ser magnetizados permanentemente por la aplicación de campo magnético externo. Por encima de una cierta temperatura (temperatura de Curie) se convierten en paramagnéticos. Como ejemplos más importantes podemos citar el hierro, el níquel, el cobalto y aleaciones de éstos. 

*Paramagnéticos: cada átomo que los constituye actúa como un pequeño imán pero se encuentran orientados al azar de modo que el efecto magnético se cancela. Cuando se someten a la aplicación de un B adquieren una imanación paralela a él que desaparece al ser retirado el campo externo. Dentro de esta categoría se encuentran el aluminio, el magnesio, titanio, el wolframio o el aire. 

*Diamagnéticos: en estos materiales la disposición de los electrones de cada átomo es tal que se produce una anulación global de los efectos magnéticos. Bajo la acción de un campo magnético externo la sustancia adquiere una imanación débil y en el sentido opuesto al campo aplicado. Son diamagnéticos por ejemplo el bismuto, la plata, el plomo o el agua.

Relación entre campos eléctricos y magnéticos

A continuación se comentan, de forma cualitativa, algunas de los fenómenos que ponen de manifiesto la interacción entre campos eléctricos y campos magnéticos:

*Una brújula cambia de orientación cerca de una corriente eléctrica: las brújulas son pequeños imanes sujetos a un soporte de forma que puedan girar libremente. De forma casi fortuita, el científico danés Oersted se percató de que una brújula sufría desviaciones al estar cerca de una corriente eléctrica. Si se disponen varias brújulas en torno a un hilo conductor, se observa que cuando no circula corriente eléctrica, todas ellas apuntan al Norte de la Tierra, debido al efecto del campo magnético terrestre (sección sabías que... de esta página). Si se hace circular una corriente, se orientan formando una circunferencia en torno al hilo.

BRÚJULAS.




    A partir de este hecho se empezó a estudiar la relación existente entre la electricidad y el magnetismo, fenómenos que se consideraban independientes. Se comprueba que, además de los imanes, la corriente eléctrica genera campo magnético y finalmente se concluye que el campo creado por los imanes responde a corrientes eléctricas a nivel microscópico por lo que:

La corriente eléctrica es la única fuente de campo magnético

    En el siguiente enlace podrás ver cuánto vale el campo generado por una corriente eléctrica que circula por un conductor.

    Un hilo de corriente sufre una fuerza en presencia de un campo magnético: en este caso la relación entre corriente eléctrica y magnetismo se manifiesta de forma inversa que en el ejemplo anterior: un hilo de corriente, cuando se encuentra en una región del espacio en la que existe un campo magnético, sufre una fuerza perpendicular al hilo. Si se invierte sentido de la corriente se comprueba que la desviación del hilo se produce en sentido contrario.


HILO FUERZAS


*Es decir, no sólo los imanes sufren una fuerza en presencia de un campo magnético, también podremos calcular la fuerza de B sobre un hilo de corriente.

*Inducción magnética: con el primer ejemplo quedó en evidencia que una corriente eléctrica genera un campo. ¿Sucede el fenómeno inverso?, es decir, ¿un campo magnético genera un campo eléctrico? Se comprueba que si, por ejemplo, se acerca y se aleja un imán cerca de un material conductor se detecta una intensidad de corriente, pero si el imán permanece en reposo desaparece esa corriente. A este proceso se le denomina inducción magnética y se resume diciendo que un campo magnético (exactamente, flujo magnético) variable genera una corriente eléctrica. Este hecho fue enunciado por primera vez por Faraday (Ley de Faraday) y constituye el principio básico del funcionamiento de los generadores eléctricos. 

*Espectro electromagnético: todas estas interacciones entre campos eléctricos y campos magnéticos fueron resumidas y formuladas matemáticamente por Maxwell en las llamadas ecuaciones de Maxwell; quedan demostradas también la existencia de las ondas electromagnéticas. El primero en generar estas ondas predichas teóricamente por Maxwell fue Hertz, quien las llamó ondas de radio. Estas ondas están formadas por un campo magnético B y uno eléctrico E, perpendiculares entre sí y perpendiculares a la dirección de propagación, que se transmiten en el vacío a la velocidad c de 3 108 m/s, cumpliéndose en cualquier instante la relación E = c B. El conjunto de estas ondas en todo su rango posible de frecuencias constituye el espectro electromagnético, del cual la luz visible representa un pequeño intervalo (entre 400 y 700 nm de longitud de onda).


ESPECTRO






    


2.- Problema Resuelto de Magnetismo.

http://acer.forestales.upm.es/basicas/udfisica/asignaturas/fisica/magnet/magnet_probl_files/probl_bobina.pdf




0 comentarios:

Publicar un comentario