Resistencias.

La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente.

Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.
Para una gran cantidad de materiales y condiciones, la resistencia eléctrica depende de la corriente eléctrica que pasa a través de un objeto y de la tensión en los terminales de este. Esto significa que, dada una temperatura y un material, la resistencia es un valor que se mantendrá constante. Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón de la tensión y la corriente, así :

R = {V \over I}

Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductores, aislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.

Asociación en serie
Dos o más resistencias se encuentran conectadas en serie cuando al aplicar al conjunto una diferencia de potencial, todas ellas son recorridas por la misma corriente.
Para determinar la resistencia equivalente de una asociación serie imaginaremos que ambas, figuras 4a) y 4c), están conectadas a la misma diferencia de potencial, UAB. Si aplicamos la segunda ley de Kirchhoff a la asociación en serie tendremos:
U_{AB} = U_1 + U_2 +...+ U_n \,
Aplicando la ley de Ohm:
U_{AB} = IR_1 + IR_2 +...+ IR_n = I(R_1 + R_2 +...+ R_n) \,
En la resistencia equivalente:
U_{AB} = IR_{AB} \,
Finalmente, igualando ambas ecuaciones se obtiene que:
IR_{AB} = I(R_1 + R_2 +...+ R_n) \,
Y eliminando la intensidad:
R_{AB} = R_1 + R_2 +...+ R_n = \sum_{k=1}^n R_k
Por lo tanto, la resistencia equivalente a n resistencias montadas en serie es igual a la sumatoria de dichas resistencias.


Asociación en paralelo

Dos o más resistencias se encuentran en paralelo cuando tienen dos terminales comunes de modo que al aplicar al conjunto una diferencia de potencial, UAB, todas las resistencias tienen la misma caída de tensión, UAB.
Para determinar la resistencia equivalente de una asociación en paralelo imaginaremos que ambas, figuras 4b) y 4c), están conectadas a la misma diferencia de potencial mencionada, UAB, lo que originará una misma demanda de corriente eléctrica, I. Esta corriente se repartirá en la asociación por cada una de sus resistencias de acuerdo con la primera ley de Kirchhoff:
{I} = {I_1} + {I_2} + ... + {I_n} \,
Aplicando la ley de Ohm:
{I} = {U_{AB} \over R_1} + {U_{AB} \over R_2} + ... + {U_{AB} \over R_n} = U_{AB}\left({1 \over R_1} + {1 \over R_2} + ... + {1 \over R_n}\right) \,
En la resistencia equivalente se cumple:
I=U_{AB}/R_{AB} \,
Igualando ambas ecuaciones y eliminando la tensión UAB:
{1 \over R_{AB}} = {1 \over R_1} + {1 \over R_2} + ... + {1 \over R_n}
De donde:
R_{AB} = {1 \over \sum_{k=1}^n {1 \over R_k} }
Por lo que la resistencia equivalente de una asociación en paralelo es igual a la inversa de la suma de las inversas de cada una de las resistencias.
Existen dos casos particulares que suelen darse en una asociación en paralelo:
1. Dos resistencias: en este caso se puede comprobar que la resistencia equivalente es igual al producto dividido por la suma de sus valores, esto es:
R_{AB} = {R_1R_2 \over R_1 + R_2} \,
2. k resistencias iguales: su equivalente resulta ser:
R_{AB} = {R \over k} \,
Asociaciones generales de resistencias: a) Serie y b) Paralelo. c) Resistencia equivalente.

0 comentarios:

Publicar un comentario